Serial No.: Case No.: 10/788,859 21291Y

Page No.:

212

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) A compound of structural formula I:

$$X \xrightarrow{R^4} \xrightarrow{R^4} \xrightarrow{R^4} \xrightarrow{R^1} \xrightarrow{N} \xrightarrow{S}$$

$$(I)$$

or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3-8$ cycloalkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) -(CH₂)_nheterocycloalkyl,
- (7) $-(CH_2)_nC(R^5)(R^6)(R^7)$,
- (8) $-(CH_2)_nC\equiv N$,
- (9) $-(CH_2)_nCON(R^8)_2$,
- (10) $-(CH_2)_nCO_2R^8$,
- (11) $-(CH_2)_nCOR^8$,
- (12) $-(CH_2)_nNR^8C(O)R^8$,
- (13) $-(CH_2)_nNR^8CO_2R^8$,
- (14) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
- (15) $-(CH_2)_nNR^8SO_2R^8$,
- (16) $-(CH_2)_nS(O)_pR^8$,
- (17) $-(CH_2)_nSO_2N(R^8)_2$,
- (18) $-(CH_2)_nOR^8$,
- (19) $-(CH_2)_nOC(O)R^8$,

Serial No.: 10/788,859 Case No.: 21291Y

Page No.: 4

(20) $-(CH_2)_nOC(O)OR^8$,

4 - - 4

- (21) $-(CH_2)_nOC(O)N(R^8)_2$,
- (22) $-(CH_2)_nN(R^8)_2$, and
- (23) $-(CH_2)_nNR^8SO_2N(R^8)_2$,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R1 is selected from the group consisting of

- (1) hydrogen,
- (2) amidino,
- (3) C₁₋₄ alkyliminoyl,
- (4) C_{1-10} alkyl,
- (5) $-(CH_2)_n$ -C₃₋₇ cycloalkyl,
- (6) $-(CH_2)_n$ -phenyl,
- (7) $-(CH_2)_n$ -naphthyl, and
- (8) $-(CH_2)_n$ -heteroaryl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo;

 R^2 is selected from the group consisting of

- (1) phenyl,
- (2) naphthyl, and
- (3) heteroaryl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³;

each R^3 is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) C_{2-8} alkenyl,
- (3) $-(CH_2)_n$ -phenyl,

(4) $-(CH_2)_n$ -naphthyl,

- (5) $-(CH_2)_n$ -heteroaryl,
- (6) -(CH₂)_nC₂-7 heterocycloalkyl,
- (7) $-(CH_2)_nC_{3-7}$ cycloalkyl,
- (8) halogen,
- (9) OR^9 ,

e - - 9

- (10) $-(CH_2)_nC(O)R^9$,
- (11) $-(CH_2)_nOC(O)R^9$,
- (12) $-(CH_2)_nC(O)OR^9$,
- (13) $-(CH_2)_nC\equiv N$,
- (14) NO₂,
- (15) $-(CH_2)_nN(R^9)_2$,
- (16) $-(CH_2)_nC(O)N(R^9)_2$,
- (17) $-(CH_2)_nNR^9C(O)R^9$,
- (18) $-(CH_2)_nNR^9C(O)OR^9$,
- (19) $-(CH_2)_nNR^9C(O)$ -heteroaryl,
- (20) $-(CH_2)_nNR^9C(O)N(R^9)_2$,
- (21) $-(CH_2)_nC(O)NR^9N(R^9)_2$,
- (22) $-(CH_2)_nC(O)NR^9NR^9C(O)R^9$,
- (23) $-(CH_2)_nNR^9S(O)_pR^9$,
- (24) $-(CH_2)_nS(O)_pN(R^9)_2$,
- (25) $-(CH_2)_nS(O)_pR^9$,
- (26) $O(CH_2)_nC(O)N(R^9)_2$,
- (27) CF₃,
- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, or two R³ substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

Serial No.: 10/788,859 Case No.: 21291 Y

Page No.: 6

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) $-(CH_2)_nC_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_n$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C_{2-8} alkenyl,
- (4) C₂₋₈ alkynyl,
- (5) C_{1-8} alkoxy,
- (6) -(CH₂)_nC₃-7 cycloalkyl,
- (7) $-(CH_2)_nC_2-7$ heterocycloalkyl,
- (8) $-(CH_2)_n$ -phenyl,
- (9) $-(CH_2)_n$ -naphthyl,
- (10) -(CH₂)_n-heteroaryl, and
- (11) -(CH₂)_nC₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R6 is selected from the group consisting of

- (1) hydrogen, and
- (2) C₁₋₈ alkyl;

R7 is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- (2) $-(CH_2)_nNR^8C(O)R^8$,

Serial No.: 10/788,859 Case No.: 21291Y

Page No.: 7

(3) $-(CH_2)_nNR^8C(O)OR^8$,

n / • ·

- (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_nNR^8S(O)R^8$,
- (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- (7) $-(CH_2)_nNR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R⁷ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C₁₋₈ alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C_{2-8} alkenyl,
- (4) $-(CH_2)_nC_3-7$ cycloalkyl,
- (5) -(CH₂)_nC₂-7 heterocycloalkyl,
- (6) -(CH₂)_nC₃-7 bicycloalkyl,
- (7) $-(CH_2)_n$ -phenyl,
- (8) $-(CH_2)_n$ -naphthyl, and
- (9) -(CH₂)_n-heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH₂) in R⁸ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,

- (5) -(CH₂)_n heterocycloalkyl, and
- (6) C₃₋₆ cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C_{1-4} alkyl, hydroxy, and C_{1-4} alkoxy, or two R^9 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

```
r is 1 or 2;

s is 0, 1, or 2;

m is 0, 1, 2, 3, or 4;

n is 0, 1, 2, 3, or 4; and

p is 0, 1, or 2.
```

- 2. (original) The compound of Claim 1 wherein R¹ is selected from the group consisting of hydrogen, C₁₋₆ alkyl, -(CH₂)₀₋₁C₃₋₆ cycloalkyl, and -(CH₂)₀₋₁-phenyl, wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R³, and alkyl and cycloalkyl are optionally substituted with one to three groups independently selected from R³ and oxo; and pharmaceutically acceptable salts thereof.
- 3. (original) The compound of Claim 1 wherein R² is phenyl or thienyl, optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 4. (original) The compound of Claim 3 wherein R² is phenyl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 5. (original) The compound of Claim 1 wherein each R⁴ is independently selected from the group consisting of hydrogen, halogen, or hydroxy; and pharmaceutically acceptable salts thereof.
- 6. (original) The compound of Claim 1 wherein X is selected from the group consisting of
 - (1) C_{1-8} alkyl,
 - (2) $-(CH_2)_nC_3$ -8 cycloalkyl,

- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) -(CH₂)_nheterocycloalkyl, and
- (6) $-(CH_2)_nC(R^5)(R^6)(R^7)$,

wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl; and pharmaceutically acceptable salts thereof.

- 7. (original) The compound of Claim 6 wherein X is phenyl or heteroaryl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 8. (original) The compound of Claim 7 wherein X is phenyl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 9. (original) The compound of Claim 6 wherein X is $-(CH_2)_nC(R^5)(R^6)(R^7)$; and pharmaceutically acceptable salts thereof.
 - 10. (original) The compound of Claim 9 wherein

n is 0;

R⁵ is selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3-7$ cycloalkyl,
- (3) -(CH₂)_nC₂-7 heterocycloalkyl,
- (4) $-(CH_2)_n$ -phenyl, and
- (5) $-(CH_2)_n$ -heteroaryl,

wherein phenyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl; and

R6 is hydrogen; and

pharmaceutically acceptable salts thereof.

11. (original) The compound of Claim 1 wherein r is 1.

12. (original) The compound of Claim 1 wherein r is 2.

13. (original) The compound of Claim 1 wherein R² is phenyl substituted with one to three groups independently selected from R³.

14. (original) The compound of Claim 1 of structural formula IIa or IIb of the indicated *trans* relative stereochemical configuration:

$$X \xrightarrow{\mathbb{R}^4} \mathbb{R}^4 \xrightarrow{\mathbb{R}^4} \xrightarrow{\mathbb{R}^$$

or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3-8$ cycloalkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) -(CH₂)_nheterocycloalkyl, and
- (6) $-(CH_2)_nC(R^5)(R^6)(R^7)$,

wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

 R^1 is selected from the group consisting of hydrogen, amidino, C_{1-4} alkyliminoyl, C_{1-6} alkyl, C_{5-6} cycloalkyl, -(CH₂)₀₋₁ phenyl, and -(CH₂)₀₋₁ heteroaryl, wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo;

R² is phenyl or thienyl, optionally substituted with one to three groups independently selected from R³;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) C₂₋₈ alkenyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) -(CH₂)_nC₂-7 heterocycloalkyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl,
- (8) halogen,
- (9) OR^9 ,
- (10) $-(CH_2)_nC(O)R^9$,
- (11) $-(CH_2)_nOC(O)R^9$,
- (12) $-(CH_2)_nC(O)OR^9$,
- (13) $-(CH_2)_nC \equiv N$,
- (14) NO₂,
- (15) $-(CH_2)_nN(R^9)_2$,
- (16) $-(CH_2)_nC(O)N(R^9)_2$,
- (17) $-(CH_2)_nNR^9C(O)R^9$,
- (18) $-(CH_2)_nNR^9C(O)OR^9$,
- (19) $-(CH_2)_nNR^9C(O)$ -heteroaryl,
- (20) $-(CH_2)_nNR^9C(O)N(R^9)_2$,
- (21) $-(CH_2)_nC(O)NR^9N(R^9)_2$,
- (22) $-(CH_2)_nC(O)NR^9NR^9C(O)R^9$,
- (23) $-(CH_2)_nNR^9S(O)_pR^9$,
- (24) $-(CH_2)_nS(O)_pN(R^9)_2$,
- (25) $-(CH_2)_nS(O)_pR^9$,
- (26) $O(CH_2)_nC(O)N(R^9)_2$,
- (27) CF₃,

- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_{0-1}C_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_{0-1}$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C₂₋₈ alkenyl,
- (4) C₂₋₈ alkynyl,
- (5) C₁₋₈ alkoxy,
- (6) $-(CH_2)_nC_3-7$ cycloalkyl,
- (7) -(CH₂)_nC₂-7 heterocycloalkyl,
- (8) $-(CH_2)_n$ -phenyl,
- (9) $-(CH_2)_n$ -naphthyl,
- (10) -(CH₂)_n-heteroaryl, and
- (11) -(CH₂)_nC₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and

oxo, and wherein any methylene (CH₂) in R⁵ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R⁶ is selected from the group consisting of

- (1) hydrogen, and
- (2) C₁₋₈ alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- (2) $-(CH_2)_n NR^8 C(O) R^8$,
- (3) $-(CH_2)_nNR^8C(O)OR^8$,
- (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_nNR^8S(O)R^8$,
- (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- (7) $-(CH_2)_nNR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R⁷ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C₁₋₈ alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) C_{2-8} alkenyl,
- (4) $-(CH_2)_nC_3-7$ cycloalkyl,
- (5) -(CH₂)_nC₂-7 heterocycloalkyl,
- (6) -(CH₂)_nC₃-7 bicycloalkyl,
- (7) $-(CH_2)_n$ -phenyl,
- (8) $-(CH_2)_n$ -naphthyl, and
- (9) $-(CH_2)_n$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and

wherein any methylene (CH₂) in R⁸ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,
- (5) $-(CH_2)_n$ heterocycloalkyl, and
- (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

r is 1 or 2; s is 0, 1 or 2; m is 0, 1, 2, 3 or 4; n is 0, 1, 2, 3 or 4; and p is 0, 1, or 2.

15. (original) The compound of Claim 1 of the following structural formula with the indicated *trans* relative stereochemical configuration:

$$X-N$$
 R^4
 R^4
 R^4
 R^7
 R^8
 R^8
 R^8

or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

(1) $-(CH_2)_{0-1}$ -phenyl,

- (2) -(CH₂)₀₋₁-heteroaryl, and
- (3) $-(CH_2)_{0-1}C(R^5)(R^6)(R^7)$,

wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R¹ is selected from the group consisting of hydrogen, C₁₋₄ alkyl, and -(CH₂)₀₋₁ phenyl;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) C₂₋₈ alkenyl,
- (3) $-(CH_2)_{0-1}$ -phenyl,
- (4) -(CH₂)₀₋₁-naphthyl,
- (5) $-(CH_2)_{0-1}$ -heteroaryl,
- (6) $-(CH_2)_{0-1}-C_{2-7}$ heterocycloalkyl,
- (7) -(CH₂)₀₋₁-C₃-7 cycloalkyl,
- (8) halogen,
- (9) OR^9 ,
- (10) $-(CH_2)_{0-1}-C(O)R^9$,
- (11) $-(CH_2)_{0-1}-OC(O)R^9$,
- (12) $-(CH_2)_{0-1}-C(O)OR^9$,
- (13) $-(CH_2)_{0-1}-C\equiv N$,
- (14) NO₂,
- (15) $-(CH_2)_{0-1}-N(R^9)_2$,
- (16) $-(CH_2)_{0-1}-C(O)N(R^9)_2$,
- (17) $-(CH_2)_{0-1}-NR^9C(O)R^9$,
- (18) $-(CH_2)_{0-1}-NR^9C(O)OR^9$,
- (19) -(CH₂)₀₋₁NR⁹C(O)-heteroaryl,
- (20) $-(CH_2)_{0-1}NR^9C(O)N(R^9)_2$,
- (21) $-(CH_2)_{0-1}C(O)NR^9N(R^9)_2$,
- (22) $-(CH_2)_{0-1}-C(O)NR^9NR^9C(O)R^9$,
- (23) $-(CH_2)_{0-1}-NR^9S(O)_{1-2}R^9$,
- (24) $-(CH_2)_{0-1}-S(O)_{1-2}N(R^9)_{2}$,
- (25) $-(CH_2)_{0-1}-S(O)_{0-2}R^9$,
- (26) $O(CH_2)_{0-1}-C(O)N(R^9)_2$,

- (27) CF₃,
- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_{0-1}-C_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_{0-1}$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) C_{2-8} alkenyl,
- (4) C₂₋₈ alkynyl,
- (5) C₁₋₈ alkoxy,
- (6) -(CH₂)₀₋₁-C₃-7 cycloalkyl,
- (7) -(CH₂)₀₋₁-C₂₋₇ heterocycloalkyl,
- (8) $-(CH_2)_{0-1}$ -phenyl,
- (9) $-(CH_2)_{0-1}$ -naphthyl,
- (10) -(CH₂)₀₋₁-heteroaryl, and
- (11) -(CH₂)₀₋₁-C₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and

bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R6 is selected from the group consisting of

- (1) hydrogen, and
- (2) C₁₋₈ alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_{0-3}-N(R^8)_{2}$,
- (2) $-(CH_2)_{0-3}-NR^8C(O)R^8$,
- (3) $-(CH_2)_{0-3}-NR^8C(O)OR^8$,
- (4) $-(CH_2)_{0-3}-NR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_{0-3}-NR^8S(O)R^8$,
- (6) $-(CH_2)_{0-3}-NR^8S(O)_2R^8$, and
- (7) $-(CH_2)_{0-3}-NR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R⁷ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R⁸ substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C_{2-8} alkenyl,
- (4) $-(CH_2)_{0-1}-C_{3-7}$ cycloalkyl,
- (5) -(CH₂)₀₋₁-C₂₋₇ heterocycloalkyl,
- (6) -(CH₂)₀₋₁-C₃-7 bicycloalkyl,
- (7) $-(CH_2)_{0-1}$ -phenyl,
- (8) $-(CH_2)_{0-1}$ -naphthyl, and
- (9) -(CH₂)₀₋₁-heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and

heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and wherein any methylene (CH₂) in R^8 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,
- (5) -(CH₂)₀₋₁ heterocycloalkyl, and
- (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

r is 1 or 2; s is 0, 1 or 2; and m is 0, 1, 2, 3 or 4.

16. (original) A compound of structural formula IV:

$$\begin{array}{c|cccc}
R^5 & R^4 & R^4 & R^1 \\
R^7 & N & N & N & N \\
\hline
0 & R^2 & N
\end{array}$$
IV

or a pharmaceutically acceptable salt thereof; wherein

R1 is selected from the group consisting of

(1) hydrogen,

(2) amidino,

ù

- (3) C₁₋₄ alkyliminoyl,
- (4) C_{1-10} alkyl,
- (5) $-(CH_2)_n$ -C3-7 cycloalkyl,
- (6) $-(CH_2)_n$ -phenyl,
- (7) $-(CH_2)_n$ -naphthyl, and

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo;

R² is selected from the group consisting of

- (1) phenyl,
- (2) naphthyl, and
- (3) heteroaryl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) C₂₋₈ alkenyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) -(CH₂)_nC₂-7 heterocycloalkyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl,
- (8) halogen,
- (9) OR^9 ,
- (10) $-(CH_2)_nC(O)R^9$,
- (11) $-(CH_2)_nOC(O)R^9$,
- (12) $-(CH_2)_nC(O)OR^9$,
- (13) -(CH₂)_nC≡N,
- (14) NO₂,
- (15) $-(CH_2)_nN(R^9)_2$,
- (16) $-(CH_2)_nC(O)N(R^9)_2$,

- (17) $-(CH_2)_nNR^9C(O)R^9$,
- (18) $-(CH_2)_nNR^9C(O)OR^9$,
- (19) -(CH₂)_nNR⁹C(O)-heteroaryl,
- (20) $-(CH_2)_nNR^9C(O)N(R^9)_2$,
- (21) $-(CH_2)_nC(O)NR^9N(R^9)_2$,
- (22) $-(CH_2)_nC(O)NR^9NR^9C(O)R^9$,
- (23) $-(CH_2)_nNR^9S(O)_pR^9$,
- (24) $-(CH_2)_nS(O)_pN(R^9)_2$,
- (25) $-(CH_2)_nS(O)_pR^9$,
- (26) $O(CH_2)_nC(O)N(R^9)_2$,
- (27) CF₃,

₿5

- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R⁴ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_nC_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_n$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C₂₋₈ alkenyl,

- (4) C₂₋₈ alkynyl,
- (5) C_{1-8} alkoxy,
- (6) -(CH₂)_nC₃-7 cycloalkyl,
- (7) -(CH₂)_nC₂-7 heterocycloalkyl,
- (8) $-(CH_2)_n$ -phenyl,
- (9) $-(CH_2)_n$ -naphthyl,
- (10) -(CH₂)_n-heteroaryl, and
- (11) -(CH₂)_nC₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in R⁵ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R⁶ is selected from the group consisting of

- (1) hydrogen, and
- (2) C₁₋₈ alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- (2) $-(CH_2)_nNR^8C(O)R^8$,
- (3) $-(CH_2)_nNR^8C(O)OR^8$,
- (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_nNR^8S(O)R^8$,
- (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- (7) $-(CH_2)_nNR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R⁷ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R⁸ substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R8 is independently selected from the group consisting of

(1) hydrogen,

- (2) C₁₋₈ alkyl,
- C_{2-8} alkenyl,
- (4) $-(CH_2)_nC_3-7$ cycloalkyl,
- (5) -(CH₂)_nC₂-7 heterocycloalkyl,
- (6) -(CH₂)_nC₃-7 bicycloalkyl,
- (7) $-(CH_2)_n$ -phenyl,
- (8) -(CH₂)_n-naphthyl, and
- (9) $-(CH_2)_n$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and wherein any methylene (CH₂) in R^8 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,
- (5) $-(CH_2)_n$ heterocycloalkyl, and
- (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

```
r is 1 or 2;
s is 0, 1 or 2;
m is 0, 1, 2, 3, or 4;
n is 0, 1, 2, 3, or 4; and
p is 0, 1, or 2.
```

Serial No.: 10/788,859 Case No.: 21291Y

Page No.: 23

17. (original) The compound of Claim 1 of the following structural formula with the indicated *trans* relative stereochemical configuration:

or a pharmaceutically acceptable salt thereof; wherein

 R^1 is selected from the group consisting of hydrogen, C_{1-4} alkyl, and -(CH_2)₀₋₁ phenyl;

each R^3 is independently selected from the group consisting of $\,\cdot\,$

- (1) C₁₋₈ alkyl,
- (2) C₂₋₈ alkenyl,
- (3) $-(CH_2)_{0-1}$ -phenyl,
- (4) $-(CH_2)_{0-1}$ -naphthyl,
- (5) $-(CH_2)_{0-1}$ -heteroaryl,
- (6) -(CH₂)₀₋₁-C₂-7 heterocycloalkyl,
- (7) $-(CH_2)_{0-1}-C_{3-7}$ cycloalkyl,
- (8) halogen,
- (9) OR^9 ,
- (10) $-(CH_2)_{0-1}-C(O)R^9$,
- (11) $-(CH_2)_{0-1}-OC(O)R^9$,
- (12) $-(CH_2)_{0-1}-C(O)OR^9$,
- (13) $-(CH_2)_{0-1}-C\equiv N$,
- (14) NO₂,
- (15) $-(CH_2)_{0-1}-N(R^9)_2$,
- (16) $-(CH_2)_{0-1}-C(O)N(R^9)_2$,
- (17) $-(CH_2)_{0-1}-NR^9C(O)R^9$,
- (18) $-(CH_2)_{0-1}-NR^9C(O)OR^9$,
- (19) -(CH₂)₀₋₁NR⁹C(O)-heteroaryl,

Serial No.: 10/788,859 Case No.: 21291Y

Page No.: 24

- (20) $-(CH_2)_{0-1}NR^9C(O)N(R^9)_2$,
- (21) $-(CH_2)_{0-1}C(O)NR^9N(R^9)_2$,
- (22) $-(CH_2)_{0-1}-C(O)NR^9NR^9C(O)R^9$,
- (23) $-(CH_2)_{0-1}-NR^9S(O)_{1-2}R^9$,
- (24) $-(CH_2)_{0-1}-S(O)_{1-2}N(R^9)_2$,
- (25) $-(CH_2)_{0-1}-S(O)_{0-2}R^9$,
- (26) $O(CH_2)_{0-1}-C(O)N(R^9)_2$,
- (27) CF₃,
- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_{0-1}-C_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_{0-1}$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) C₂₋₈ alkenyl,
- (4) C₂₋₈ alkynyl,
- (5) C_{1-8} alkoxy,
- (6) -(CH₂)₀₋₁-C₃-7 cycloalkyl,

- (7) -(CH₂)₀₋₁-C₂-7 heterocycloalkyl,
- (8) $-(CH_2)_{0-1}$ -phenyl,
- (9) $-(CH_2)_{0-1}$ -naphthyl,
- (10) -(CH₂)₀₋₁-heteroaryl, and
- (11) -(CH₂)₀₋₁-C₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalky, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in R⁵ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R⁶ is selected from the group consisting of

- (1) hydrogen, and
- (2) C_{1-8} alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_{0-3}-N(R^8)_{2}$,
- (2) $-(CH_2)_{0-3}-NR^8C(O)R^8$,
- (3) $-(CH_2)_{0-3}-NR^8C(O)OR^8$,
- (4) $-(CH_2)_{0-3}-NR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_{0-3}-NR^8S(O)R^8$,
- (6) $-(CH_2)_{0-3}-NR^8S(O)_2R^8$, and
- (7) $-(CH_2)_{0-3}-NR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R⁷ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C₁₋₈ alkyl and oxo;

each R⁸ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C₂₋₈ alkenyl,
- (4) -(CH₂)₀₋₁-C₃-7 cycloalkyl,

- (5) -(CH₂)₀₋₁-C₂₋₇ heterocycloalkyl,
- (6) -(CH₂)₀₋₁-C₃₋₇ bicycloalkyl,
- (7) $-(CH_2)_{0-1}$ -phenyl,
- (8) $-(CH_2)_{0-1}$ -naphthyl, and
- (9) $-(CH_2)_{0-1}$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH₂) in R⁸ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

each R9 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) phenyl,
- (4) heteroaryl,
- (5) -(CH₂)₀₋₁ heterocycloalkyl, and
- (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

```
r is 1 or 2;
s is 0, 1 or 2; and
m is 0, 1, 2, 3 or 4.
```

18. (original) The compound of Claim 1 selected from the group consisting of:

Serial No.: Case No.: Page No.: 10/788,859 21291Y

27

Serial No.: 10/788,859 Case No.: 21291Y

Page No.: 29

or a pharmaceutically acceptable salt thereof.

19. (original) The compound of Claim 1 selected from the group consisting of:

Serial No.:

10/788,859 21291Y

Case No.: Page No.:

30

or a pharmaceutically acceptable salt thereof.

20. (original) The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

21. (original) The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

22. (original) The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

23. (original) The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

24. (original) The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

25. (original) A method for the treatment or prevention of disorders, diseases or conditions responsive to the activation of the melanocortin-4 receptor in a mammal in need thereof which

Serial No.: Case No.: 10/788,859 21291Y

Page No.:

32

comprises administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.

26. (original) A method for the treatment or prevention of obesity in a mammal in need thereof which comprises administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.

- 27. (original) A method for the treatment or prevention of diabetes mellitus in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
- 28. (original) A method for the treatment or prevention of male or female sexual dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
- 29. (original) A method for the treatment or prevention of erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
- 30. (original) A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 31. (original) The pharmaceutical composition of Claim 30 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, a HMG-CoA reductase inhibitor, a serotonergic agent, a β3-adrenoreceptor agonist, a neuropeptide Y1 antagonist, a neuropeptide Y5 antagonist, a pancreatic lipase inhibitor, a cannabinoid CB₁ receptor antagonist or inverse agonist, a melanin-concentrating hormone receptor antagonist, a bombesin receptor subtype 3 agonist, and a ghrelin receptor antagonist.
- 32. (original) The pharmaceutical composition of Claim 30 further comprising a second active ingredient selected from the group consisting of a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α2-adrenergic receptor antagonist, and a dopaminergic agent.

Serial No.: Case No.: 10/788,859 21291Y

Page No.:

33

33. (original) A method of treating erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.

- 34. (original) A method of treating erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of Claim 1 in combination with a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α_2 -adrenergic receptor antagonist, or a dopaminergic agent.
- 35. (original) A method of treating diabetes in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.
- 36. (original) A method of treating obesity in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.
- 37. (original) A method of treating diabetes or obesity in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of Claim 1 in combination with an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, a HMG-CoA reductase inhibitor, a serotonergic agent, a β3-adrenoreceptor agonist, a neuropeptide Y1 antagonist, a neuropeptide Y5 antagonist, a pancreatic lipase inhibitor, a cannabinoid CB₁ receptor antagonist or inverse agonist, a melanin-concentrating hormone receptor antagonist, a bombesin receptor subtype 3 agonist, or a ghrelin receptor antagonist.
- 38. (original) The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the hydrochloride salt.
- 39. (original) The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the trifluoroacetic acid salt.
- 40. (original) The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the bis phosphate salt.

Claims 41 – 46 (cancelled)

Serial No.: 10/788,859 Case No.: 21291 Y

Page No.: 34

47. (new) The compound of Claim 19 which is:

or a pharmaceutically acceptable salt thereof.

48. (new) The compound of Claim 19 which is:

or a pharmaceutically acceptable salt thereof.